Polymorphism at the defensin gene in the Anopheles gambiae complex: testing different selection hypotheses.
نویسندگان
چکیده
Genetic variation in defensin, a gene encoding a major effector molecule of insects immune response was analyzed within and between populations of three members of the Anopheles gambiae complex. The species selected included the two anthropophilic species, An. gambiae and An. arabiensis and the most zoophilic species of the complex, An. quadriannulatus. The first species was represented by four populations spanning its extreme genetic and geographical ranges, whereas each of the other two species was represented by a single population. We found (i) reduced overall polymorphism in the mature peptide region and in the total coding region, together with specific reductions in rare and moderately frequent mutations (sites) in the coding region compared with non-coding regions, (ii) markedly reduced rate of non-synonymous diversity compared with synonymous variation in the mature peptide and virtually identical mature peptide across the three species, and (iii) increased divergence between species in the mature peptide together with reduced differentiation between populations of An. gambiae in the same DNA region. These patterns suggest a strong purifying selection on the mature peptide and probably the whole coding region. Because An. quadriannulatus is not exposed to human pathogens, identical mature peptide and similar pattern of polymorphism across species implies that human pathogens played no role as selective agents on this peptide.
منابع مشابه
Monitoring Pyrethroid Insecticide Resistance in Major Malaria Vector Anopheles culicifacies: Comparison of Molecular Tools and Conventional Susceptibility Test
<Anopheles culicifacies is a main malaria vector in southeastern part of Iran, bordring Afghanistan and Pakistan. So far, resistance to DDT, dieldrin, malathion and partial tolerance to pyrethroids has been reported in An. stephensi, but nothing confirmed on resistance status of An. culicifacies in Iran. Methods: In current study, along with WHO routine susceptibility test with DDT (4%), di...
متن کاملReverse genetics in the mosquito Anopheles gambiae: targeted disruption of the Defensin gene.
Anopheles gambiae, the major vector of human malaria parasite, is an important insect model to study vector-parasite interactions. Here, we developed a simple in vivo double-stranded RNA (dsRNA) knockout approach to determine the function of the mosquito antimicrobial peptide gene Defensin. We injected dsRNA into adults and observed efficient and reproducible silencing of Defensin. Analysis of ...
متن کاملMolecular Evolution of Immune Genes in the Malaria Mosquito Anopheles gambiae
BACKGROUND As pathogens that circumvent the host immune response are favoured by selection, so are host alleles that reduce parasite load. Such evolutionary processes leave their signature on the genes involved. Deciphering modes of selection operating on immune genes might reveal the nature of host-pathogen interactions and factors that govern susceptibility in host populations. Such understan...
متن کاملGenomic Analyses of Three Malaria Vectors Reveals Extensive Shared Polymorphism but Contrasting Population Histories
Anopheles gambiae s.l. are important malaria vectors, but little is known about their genomic variation in the wild. Here, we present inter- and intraspecies analysis of genome-wide RADseq data, in three Anopheles gambiae s.l. species collected from East Africa. The mosquitoes fall into three genotypic clusters representing described species (A. gambiae, A. arabiensis, and A. merus) with no evi...
متن کاملThe demographic histories of the M and S molecular forms of Anopheles gambiae s.s.
Anopheles gambiae is a primary vector of Plasmodium falciparum, a human malaria parasite that causes over a million deaths each year in sub-Saharan Africa. Population genetic tests have been employed to detect natural selection at suspected A. gambiae antimalaria genes, but these tests have generally been compromised by the lack of demographically correct null models. Here, we used a coalescent...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases
دوره 7 2 شماره
صفحات -
تاریخ انتشار 2007